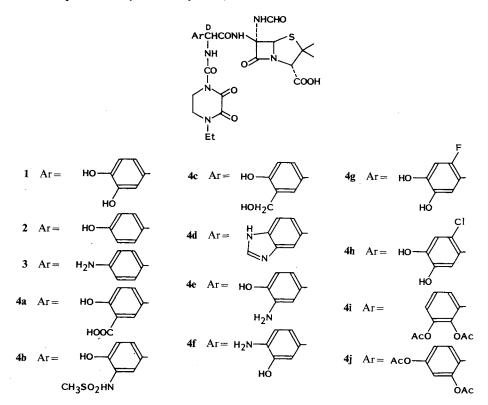
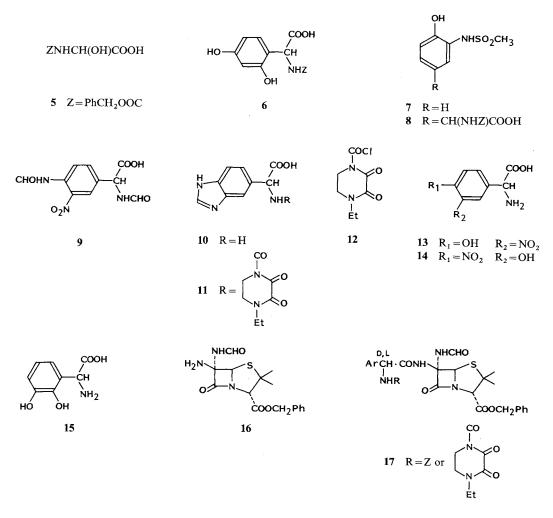
STRUCTURE-ACTIVITY RELATIONSHIPS OF SOME ARYLGLYCINE ANALOGUES AND CATECHOL ISOSTERES OF BRL 36650, A 6α-FORMAMIDO PENICILLIN

DESMOND J. BEST, GEORGE BURTON, DAVID T. DAVIES, JOHN S. ELDER, TERENCE C. SMALE, ROBERT SOUTHGATE, ANDREW V. STACHULSKI^{*}, MICHAEL J. BASKER and SARAH J. KNOTT


Beecham Pharmaceuticals Research Division, Brockham Park, Betchworth, Surrey, RH3 7AJ, England


(Received for publication January 19, 1990)

Earlier reports from these laboratories outlined the preparation¹⁾ and biological properties^{2,3)} of 6α -formamido penicillins. The catecholic acylureido derivative BRL 36650 (1) was the most potent, especially against *Pseudomonas aeruginosa* strains. We now report on analogues of 1 which either retain a catechol or dihydroxyphenyl unit or contain various catechol isosteres.

The general concept of isosteric modification in drug design has been reviewed⁴. Catechol isosteres are meant to prevent enzymic methylation, in particular by catechol O-methyl transferase into less active monomethyl ethers as reported for other β -lactams⁵). Frequently the *para*-hydroxy group has been retained and the *meta*-hydroxy replaced with a group bearing a relatively acidic proton^{6,7}) such as carboxy (4a), methanesulfonamido (4b), or hydroxymethyl (4c). Heterocycles such as pyridones and benzimidazoles (4d)⁴) have also been employed. As the 4-hydroxy (2)³ and 4-amino (3) compounds had similar activity, amino-hydroxy analogues (4e and 4f) were included in the programme. Other analogues featured two further-substituted catechols (4g and 4h), a protected 2,3-catechol (4i) and a protected 2,4-dihydroxyphenylglycine (4j).

Syntheses of penicillins $(1 \sim 3)$ have been described previously^{1,8,9)}. The requisite side-chains for analogues **4a** ~ **4c**, **4g**, **4h** and **4j** were obtained by α -amidoalkylation procedures. Thus the reaction of resorcinol with α -hydroxyglycine derivative (5)¹⁰⁾ in acetic acid - sulfuric acid (9:1) gave regiospecifically (**6**) in 22% yield. Similarly, reaction of **7** (obtained from *o*-aminophenol by treatment with MeSO₂Cl (1 eq) in THF-pyridine at 0°C in 82% yield) with **5** afforded arylglycine (**8**) (69%). Phenolic protection of such compounds was achieved by acetylation (Ac₂O, aq THF, pH 6); in many antibacterial screens we have found free

phenols and their acetates to be equiactive.

The benzimidazole series 4d was entered by bis-*N*-formylation of DL-4-aminophenylglycine, then nitration (HCOOH - Ac_2O , then fuming HNO₃; 65% overall) to give acid (9). Catalytic hydrogenation (Pd, EtOH, HCl) followed by heating with aqueous HCOOH produced benzimidazole (10) (75% overall); acylation with chloride (12) then gave acid (11) (78%). The D-4-hydroxy, 3-nitro acid (13) is known¹¹; nitration of DL-3-hydroxyphenylglycine gave the desired isomer (14); acylation of both these compounds with 12 gave the desired acids for 4e and 4f. The amino acid (15) was prepared by a Strecker synthesis on 2,3-dihydroxybenzaldehyde; acylation with 12, then *O*-acetylation, gave the side-chain for 4i.

Coupling of all side-chain acids to the 6α -formamido penicillin ester (16)¹⁾ was achieved using dicyclohexylcarbodiimide (in ethyl acetate, THF, or DMF) to produce in $50 \sim 70\%$ yield the mixed

epimers of type 17. Chromatographic separation of the desired, more polar D-epimers followed by hydrogenolysis of protecting groups (with concomitant reduction of nitro to amino in 4e and 4f afforded penicillins $4a \sim 4j$, after acylating with chloride (12) where necessary, in high yield.

The antibacterial activities of the D-epimers $1 \sim 3$ and $4a \sim 4j$ are shown in Table 1. It will be seen that only derivatives 4g and 4h which retained a 3,4-catechol exhibited activity comparable to 1; in fact the chloro-analogue 4h was more active than 1 against *Escherichia coli* and *P. aeruginosa* strains. The 2,3-catecholic analogue (4i) retained good *P. aeruginosa* activity but was otherwise 2- to 4-fold less active, while the 2,4-dihydroxy compound 4j was very much less active. Although the isosteric analogues $(4a \sim 4f)$ all retained MICs of $0.25 \sim 8.0 \,\mu$ g/ml against Gramnegative bacteria, they were all less active than 1, especially against *E. coli* JT425 and *P. aeruginosa*

Organism	Derivative												
	1	2	3	4 a	4b	4c	4d	4e	4f	4g	4h	4 i	4j
Escherichia coli NCTC 10418	0.06	0.12	0.12	0.5	0.25	0.25	0.25	0.12	0.25	0.06	< 0.03	0.12	2.0
E. coli DCO	0.25	1.0	0.25	0.5	1.0	1.0	0.5	0.5	0.5	_	< 0.03	0.5	2.0
E. coli DCO RTEM	0.12	1.0	0.25	1.0	1.0	1.0	0.5	1.0	1.0	0.06	< 0.03	0.5	2.0
E. coli JT425	0.25	8.0	2.0	32	8.0	8.0	4.0	4.0	4.0	0.5	0.06	2.0	8.0
Pseudomonas aeruginosa NCTC 10662	2.0	16	8.0	4.0	16	16	8.0	16	8.0	4.0	1.0	2.0	>100
P. aeruginosa K799b	0.12	2.0	1.0	2.0		4.0	4.0	4.0	4.0		0.06	0.12	
P. aeruginosa Dalgleish (PSE-4)	1.0	8.0	4.0	4.0	16	16	8.0	16	8.0	1.0	1.0	4.0	64
Klebsiella pneumoniae T767	0.06	1.0	0.5	1.0	1.0	1.0	0.5	0.5	1.0	0.06	< 0.03	1.0	4.0
Enterobacter cloacae N1	1.0	2.0	0.5	2.0	2.0	2.0	2.0	1.0	2.0	0.5	1.0	2.0	16
Proteus mirabilis 977	0.5	1.0	0.12	0.25	2.0	2.0	1.0	1.0	2.0	1.0	8.0	4.0	8.0
Staphylococcus aureus Oxford	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
Streptococcus pyogenes CN10	2.0	1.0	1.0	64	2.0	4.0	4.0	4.0	4.0	4.0	8.0	8.0	8.0

Table 1. MICs^a (μ g/ml) of 6 α -formamido, acylureido penicillins.

^a MIC values were determined by serial dilution in Blood Agar Base (Oxoid) against an inoculum of 1×10^6 cfu.

VOL. XLIII NO. 5

PSE-4. This supports the recent hypothesis^{12,13}) that a catechol group allows a particularly efficient transport of β -lactams across the Gram-negative outer cell wall membrane, perhaps *via* the iron-transport mechanism.

Acknowledgement

We are grateful to Mr. A. J. BICKNELL for valuable discussions.

References

- SMALE, T. C.; A. W. GUEST, F. P. HARRINGTON, P. H. MILNER, R. J. PONSFORD & A. V. STACHULSKI: 6α(7α)-Formamido penicillins and cephalosporins. J. Chem. Soc. Chem. Commun. 1984: 1335~1336, 1984
- BASKER, M. J.; R. A. EDMONDSON, S. J. KNOTT, R. J. PONSFORD, B. SLOCOMBE & S. J. WHITE: In vitro antibacterial properties of BRL 36650, a novel 6α-substituted penicillin. Antimicrob. Agents Chemother. 26: 734~740, 1984
- GUEST, A. W.; F. P. HARRINGTON, P. H. MILNER, R. J. PONSFORD, T. C. SMALE, A. V. STACHULSKI, M. J. BASKER & B. SLOCOMBE: Structure-activity relationships of some 6α-formamido penicillins. J. Antibiotics 39: 1498 ~ 1501, 1986
- THORNBER, C. W.: Isosterism and molecular modification in drug design. Chem. Soc. Rev. 8: 563~580, 1979
- 5) OHI, N.; B. AOKI, T. KUROKI, M. MATSUMOTO, K. KOJIMA & T. NEHASHI: Semisynthetic β-lactam antibiotics. III. Effect on antibacterial activity and COMT-susceptibility of chlorine-introduction into

the catechol nucleus of 6-[(R)-2-[3-(3,4-dihydroxybenzoyl)-3-(3-hydroxypropyl)-1-ureido]-2-phenyl $acetamido]penicillanic acid. J. Antibiotics 40: <math>22 \sim 28$, 1987

- BRITTAIN, R. T.; D. JACK & A. C. RITCHIE: Recent β-adrenoreceptor stimulants. Adv. Drug Res. 5: 197~253, 1970
- ULOTH, R. H.; J. R. KIRK, W. A. GOULD & A. A. LARSEN: Sulfonanilides I. J. Med. Chem. 9: 88~97, 1966
- MILNER, P. H. (Beecham): Beta-lactam antibacterial agents. Brit. UK Pat. 2 107 307 B, Feb. 26, 1986
- 9) STACHULSKI, A. V.; E. A. CUTMORE, A. W. GUEST, J. D. I. HATTO, C. J. MOORES, T. C. SMALE & J. W. TYLER: Aqueous and Anhydrous Degradations of 6α-Formamido Penicillins. J. Chem. Soc. Perkin Trans. I 1990: 847~853, 1990
- BEN-ISHAI, D.; I. SATATY & Z. BERNSTEIN: A new synthesis of N-acyl aromatic α-amino acids. Tetrahedron 32: 1571~1573, 1976
- FOSTER, G. R.; D. J. DRINKWATER & B. J. MOON (Beecham): Penicillins. Brit. UK Pat. Appl. 1 450 764, Sept. 29, 1976
- 12) WATANABE, N.; T. NAGASU, K. KATSU & K. KITOH: E-0702, a new cephalosporin, is incorporated into *Escherichia coli* cells via the *tonB*-dependent iron transport system. Antimicrob. Agents Chemother. 31: 497~504, 1987
- OHI, N.; B. AOKI, T. SHINOZAKI, K. MORO, T. NOTO, T. NEHASHI, H. OKAZAKI & I. MATSUNAGA: Semisynthetic β-lactam antibiotics. I. Synthesis and antibacterial activity of new ureidopenicillin derivatives having catechol moieties. J. Antibiotics 39: 230~241, 1986